Source code for pyoptsparse.pyParOpt.ParOpt

import numpy as np
import datetime

try:
    from paropt import ParOpt as _ParOpt
    from mpi4py import MPI
except ImportError:
    _ParOpt = None

from ..pyOpt_optimizer import Optimizer
from ..pyOpt_error import Error


[docs]class ParOpt(Optimizer): """ ParOpt optimizer class ParOpt has the capability to handle distributed design vectors. This is not replicated here since pyOptSparse does not have the capability to handle this type of design problem. """ def __init__(self, *args, **kwargs): name = "ParOpt" category = "Local Optimizer" defOpts = { "filename": [str, "paropt.out"], "algorithm": [str, "ip"], # Other options: tr # Generic options for the interior point method/trust region "qn_subspace_size": [int, 10], "norm_type": [str, "l2"], # l1, linfty "barrier_strategy": [str, "monotone"], "starting_point_strategy": [str, "least_squares_multipliers"], "max_iterations": [int, 1000], "abs_optimality_tol": [float, 1e-6], "rel_function_tol": [float, 0.0], "penalty_gamma": [float, 1000.0], "barrier_fraction": [float, 0.25], "barrier_power": [float, 1.0], "reset_hessian_frequency": [int, 100000], "bfgs_update_type": [str, "skip"], # or 'damped' "affine_step_multiplier_min": [float, 1.0], "init_barrier_parameter": [float, 0.1], "max_linesearch_iters": [int, 10], "armijo_parameter": [float, 1e-3], "penalty_descent_fraction": [float, 0.3], "min_penalty_parameter": [float, 0.0], # Trust region specifics "tr_init_size": [float, 0.01], "tr_max_size": [float, 1.0], "tr_min_size": [float, 0.0], "tr_eta": [float, 0.25], "tr_penalty_gamma": [float, 10.0], "tr_max_iterations": [int, 250], "tr_abs_optimality_tol": [float, 1e-6], } informs = {} if _ParOpt is None: raise Error("There was an error importing ParOpt") self.set_options = [] Optimizer.__init__(self, name, category, defOpts, informs, *args, **kwargs) # ParOpt requires a dense Jacobian format self.jacType = "dense2d" return
[docs] def __call__( self, optProb, sens=None, sensStep=None, sensMode=None, storeHistory=None, hotStart=None, storeSens=True ): """ This is the main routine used to solve the optimization problem. Parameters ---------- optProb : Optimization or Solution class instance This is the complete description of the optimization problem to be solved by the optimizer sens : str or python Function. Specifiy method to compute sensitivities. To explictly use pyOptSparse gradient class to do the derivatives with finite differenes use \'FD\'. \'sens\' may also be \'CS\' which will cause pyOptSpare to compute the derivatives using the complex step method. Finally, \'sens\' may be a python function handle which is expected to compute the sensitivities directly. For expensive function evaluations and/or problems with large numbers of design variables this is the preferred method. sensStep : float Set the step size to use for design variables. Defaults to 1e-6 when sens is \'FD\' and 1e-40j when sens is \'CS\'. sensMode : str Use \'pgc\' for parallel gradient computations. Only available with mpi4py and each objective evaluation is otherwise serial storeHistory : str File name of the history file into which the history of this optimization will be stored hotStart : str File name of the history file to "replay" for the optimziation. The optimization problem used to generate the history file specified in \'hotStart\' must be **IDENTICAL** to the currently supplied \'optProb\'. By identical we mean, **EVERY SINGLE PARAMETER MUST BE IDENTICAL**. As soon as he requested evaluation point from ParOpt does not match the history, function and gradient evaluations revert back to normal evaluations. storeSens : bool Flag sepcifying if sensitivities are to be stored in hist. This is necessay for hot-starting only. """ self.callCounter = 0 self.storeSens = storeSens if len(optProb.constraints) == 0: # If the problem is unconstrained, add a dummy constraint. self.unconstrained = True optProb.dummyConstraint = True # Save the optimization problem and finalize constraint # jacobian, in general can only do on root proc self.optProb = optProb self.optProb.finalizeDesignVariables() self.optProb.finalizeConstraints() self._setInitialCacheValues() self._setSens(sens, sensStep, sensMode) blx, bux, xs = self._assembleContinuousVariables() xs = np.maximum(xs, blx) xs = np.minimum(xs, bux) # The number of design variables n = len(xs) oneSided = True if self.unconstrained: m = 0 else: indices, blc, buc, fact = self.optProb.getOrdering(["ne", "le", "ni", "li"], oneSided=oneSided) m = len(indices) self.optProb.jacIndices = indices self.optProb.fact = fact self.optProb.offset = buc if self.optProb.comm.rank == 0: # Set history/hotstart self._setHistory(storeHistory, hotStart) class Problem(_ParOpt.Problem): def __init__(self, ptr, n, m, xs, blx, bux): super(Problem, self).__init__(MPI.COMM_SELF, n, m) self.ptr = ptr self.n = n self.m = m self.xs = xs self.blx = blx self.bux = bux self.fobj = 0.0 return def getVarsAndBounds(self, x, lb, ub): """Get the variable values and bounds""" lb[:] = self.blx ub[:] = self.bux x[:] = self.xs return def evalObjCon(self, x): """Evaluate the objective and constraint values""" fobj, fcon, fail = self.ptr._masterFunc(x[:], ["fobj", "fcon"]) self.fobj = fobj return fail, fobj, -fcon def evalObjConGradient(self, x, g, A): gobj, gcon, fail = self.ptr._masterFunc(x[:], ["gobj", "gcon"]) g[:] = gobj[:] for i in range(self.m): A[i][:] = -gcon[i][:] return fail # Create the ParOpt problem class problem = Problem(self, n, m, xs, blx, bux) # Get the algorithm/subspace size parameters algorithm = self.getOption("algorithm").lower() qn_subspace_size = self.getOption("qn_subspace_size") filename = self.getOption("filename") optTime = MPI.Wtime() if algorithm == "ip": # Create the optimizer opt = _ParOpt.InteriorPoint(problem, qn_subspace_size, _ParOpt.BFGS) # Set the ParOpt options self._set_paropt_options(opt) # Optimize! opt.setOutputFile(filename) opt.optimize() else: norm_type = self.getOption("norm_type").lower() # Optimality tolerance opt_tol = self.getOption("abs_optimality_tol") # Trust region algorithm options tr_init_size = self.getOption("tr_init_size") tr_max_size = self.getOption("tr_max_size") tr_min_size = self.getOption("tr_min_size") tr_eta = self.getOption("tr_eta") tr_penalty_gamma = self.getOption("tr_penalty_gamma") tr_opt_abs_tol = self.getOption("tr_abs_optimality_tol") tr_max_iterations = self.getOption("tr_max_iterations") # Create the quasi-Newton Hessian approximation qn = _ParOpt.LBFGS(problem, subspace=qn_subspace_size) # Create the trust region problem tr = _ParOpt.TrustRegion(problem, qn, tr_init_size, tr_min_size, tr_max_size, tr_eta, tr_penalty_gamma) # Create the ParOpt problem opt = _ParOpt.InteriorPoint(tr, qn_subspace_size, _ParOpt.NO_HESSIAN_APPROX) # Set the ParOpt options self._set_paropt_options(opt) # Set the output file name opt.setOutputFile(filename) # Set the penalty parameter internally in the # code. These must be consistent between the trust # region object and ParOpt. opt.setPenaltyGamma(tr_penalty_gamma) # Set parameters for ParOpt in the subproblem opt.setMaxMajorIterations(tr_max_iterations) opt.setAbsOptimalityTol(tr_opt_abs_tol) # Don't update the quasi-Newton method opt.setQuasiNewton(qn) opt.setUseQuasiNewtonUpdates(0) # Check the norm type if norm_type == "l1": opt.setNormType(_ParOpt.L1_NORM) elif norm_type == "linfty": opt.setNormType(_ParOpt.INFTY_NORM) else: opt.setNormType(_ParOpt.L2_NORM) # Initialize the problem tr.initialize() # Iterate max_iterations = self.getOption("max_iterations") for i in range(max_iterations): opt.setInitBarrierParameter(100.0) opt.resetDesignAndBounds() opt.optimize() # Get the optimized point x, z, zw, zl, zu = opt.getOptimizedPoint() # Update the trust region method infeas, l1, linfty = tr.update(x, z, zw) if norm_type == "l1": opt_criteria = l1 < opt_tol else: opt_criteria = linfty < opt_tol if (infeas < opt_tol) and opt_criteria: break # Set the total opt time optTime = MPI.Wtime() - optTime # Get the obective function value fobj = problem.fobj # Get the optimized point x, z, zw, zl, zu = opt.getOptimizedPoint() if self.storeHistory: self.metadata["endTime"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") self.metadata["optTime"] = optTime self.hist.writeData("metadata", self.metadata) self.hist.close() # Create the optimization solution. Note that the signs on the multipliers # are switch since ParOpt uses a formulation with c(x) >= 0, while pyOpt # uses g(x) = -c(x) <= 0. Therefore the multipliers are reversed. sol_inform = {} # If number of constraints is zero, ParOpt returns z as None. # Thus if there is no constraints, should pass an empty list # to multipliers instead of z. if z is not None: sol = self._createSolution(optTime, sol_inform, fobj, x[:], multipliers=-z) else: sol = self._createSolution(optTime, sol_inform, fobj, x[:], multipliers=[]) # Indicate solution finished self.optProb.comm.bcast(-1, root=0) else: # We are not on the root process so go into waiting loop: self._waitLoop() sol = None # Communication solution and return sol = self._communicateSolution(sol) return sol
def _set_paropt_options(self, opt): """ set all of the the options in self.set_options in the ipopt instance nlp """ # Set Options from the local options dictionary # --------------------------------------------- for key in self.options: if key != "defaults": value = self.getOption(key) if key == "norm_type": if value == "l1": opt.setNormType(_ParOpt.L1_NORM) elif value == "linfty": opt.setNormType(_ParOpt.INFTY_NORM) elif value == "l2": opt.setNormType(_ParOpt.L2_NORM) elif key == "barrier_strategy": if value == "monotone": opt.setBarrierStrategy(_ParOpt.MONOTONE) elif value == "mehrotra": opt.setBarrierStrategy(_ParOpt.MEHROTRA) elif value == "complementarity_fraction": opt.setBarrierStrategy(_ParOpt.COMPLEMENTARITY_FRACTION) elif key == "starting_point_strategy": if value == "none": opt.setStartingPointStrategy(_ParOpt.NO_START_STRATEGY) elif value == "least_squares_multipliers": opt.setStartingPointStrategy(_ParOpt.LEAST_SQUARES_MULTIPLIERS) elif value == "affine_step": opt.setStartingPointStrategy(_ParOpt.AFFINE_STEP) elif key == "max_iterations": opt.setMaxMajorIterations(value) elif key == "abs_optimality_tol": opt.setAbsOptimalityTol(value) elif key == "rel_function_tol": opt.setRelFunctionTol(value) elif key == "penalty_gamma": opt.setPenaltyGamma(value) elif key == "barrier_power": opt.setBarrierFraction(value) elif key == "barrier_power": opt.setBarrierPower(value) elif key == "reset_hessian_frequency": opt.setHessianResetFreq(value) elif key == "bfgs_update_type": if value == "skip": opt.setBFGSUpdateType(_ParOpt.SKIP_NEGATIVE_CURVATURE) elif value == "damped": opt.setBFGSUpdateType(_ParOpt.DAMPED_UPDATE) elif key == "affine_step_multiplier_min": opt.setStartAffineStepMultiplierMin(value) elif key == "init_barrier_parameter": opt.setInitBarrierParameter(value) elif key == "max_linesearch_iters": opt.setMaxLineSearchIters(value) elif key == "armijo_parameter": opt.setArmijoParam(value) elif key == "penalty_descent_fraction": opt.setPenaltyDescentFraction(value) elif key == "min_penalty_parameter": opt.setPenaltyDescentFraction(value) def _on_setOption(self, name, value): pass def _on_getOption(self, name, value): pass